Pemodelan Modul Fotovoltaik Sederhana menggunakan Matlab/Simulink
DOI:
https://doi.org/10.31957/jfp.v3i1.154Keywords:
fotovoltaik, kurva I-V, pemodelanAbstract
Meningkatkan performa teknologi fotovoltaik (PV) membutuhkan pemahaman karakteristik kelistrikan dari modul PV. Salah satu karakteristik kelistrikan modul PV ditunjukan oleh kurva arus-tegangan (I-V) dan kurva daya-tegangan (P-V). Penelitian ini bertujuan untuk mengembangkan model sederhana modul PV untuk memahami karakteristik kurva I-V dari modul PV. Desain model dan simulasi hasil dilakukan menggunakan perangkat lunak Matlab/Simulink. Modul PV Solarex MSX-60 dipakai sebagai referensi untuk validasi model. Hasil simulasi menunjukan bahwa arus, tegangan dan daya keluaran dari modul PV sangat dipengaruhi oleh tingkat iradiansi, temperatur modul dan material semikonduktor yang digunakan
References
B. C. Brusso, “A Brief History of the Energy Conversion of Light [History],” IEEE Industry Applications Magazine, vol. 25, no. 4. 2019. doi: 10.1109/MIAS.2019.2908804.
L. M. Fraas, “History of Solar Cell Development,” in Low-Cost Solar Electric Power, 2014. doi: 10.1007/978-3-319-07530-3_1.
L. Thomas, C. H. Don, and J. D. Major, “An investigation into the optimal device design for selenium solar cells,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.05.045.
M. A. Green, “Silicon photovoltaic modules: A brief history of the first 50 years,” Progress in Photovoltaics: Research and Applications, vol. 13, no. 5. 2005. doi: 10.1002/pip.612.
N. Schalager and J. Weisblatt, Alternative Energy, vol. 3. Detroit, Mich. : UXL: Gale, 2006.
NREL, “Best Research-Cell Efficiency Chart.” Accessed: Jan. 23, 2024. [Online]. Available: https://www.nrel.gov/pv/cell-efficiency.html
M. A. Green et al., “Solar cell efficiency tables (version 62),” Progress in Photovoltaics: Research and Applications, vol. 31, no. 7, 2023, doi: 10.1002/pip.3726.
E. D. Dunlop, D. Halton, and H. A. Ossenbrink, “20 years of life and more: Where is the end of life of a PV module?,” in Conference Record of the IEEE Photovoltaic Specialists Conference, 2005. doi: 10.1109/PVSC.2005.1488449.
K. N. Waimbo, “Hybrid Renewable Energy Conversion System Modelling and Simulation,” Unpublished MSc Thesis, University of South Wales, formerly the University of Glamorgan, Pontypridd, 2013.
D. Jena and V. V. Ramana, “Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review,” Renewable and Sustainable Energy Reviews, vol. 52. 2015. doi: 10.1016/j.rser.2015.07.079.
H. L. Tsai, “Insolation-oriented model of photovoltaic module using Matlab/Simulink,” Solar Energy, vol. 84, no. 7, 2010, doi: 10.1016/j.solener.2010.04.012.
C. Wang, “Modeling and Control of Hybrid Wind/Photovoltaic/Fuel Cell Distributed Generation Systems,” PhD Thesis, Montana State University, Montana, 2006.
A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal, “Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels,” Energy Reports, vol. 8. 2022. doi: 10.1016/j.egyr.2022.09.054.
Solarex, “MSX-60 PDF Spec sheet.” Maryland, 1997. Accessed: Feb. 01, 2024. [Online]. Available: https://www.solarelectricsupply.com/media/sparsh/product_attachment/custom/upload/Solarex-MSX64.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 This license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.